In this vignette, we will illustrate the use of this package by reproducing the simulation studies in Yang et al., (2022), Section 4. The following codes layout the simulation setups.
library(ElasticIntegrative)
m <- 2000 # size for RWE
niter <- 2000 # number of replication
thres.psi <- sqrt(log(m)) # threshold for ACI psi
alltlocalpar <- c(2,1,round((seq(0.8,0,length.out=8)),2))Now, we generate the necessary datasets by GenData and
conduct the proposed method by elasticHTE for elastic
integrative analyses.
# psi = c(0, 0, 0)
elastic_psi000_lists <- lapply(alltlocalpar, function(tlocalpar)
{
elastic_list <- sapply(1:niter, function(seed)
{
Data.list <- GenData(beta0 = c(0, 1, 1, 1), # for the mu0 function
psi0 = c(0, 0, 0), # for the contrast function
n = 1e5, mean.x = 1, # setup for the finite population
n.t = NULL, # for the RCT, use the default sample size
m = m, tlocalpar = tlocalpar, # for the RWE
seed = seed)
elasticHTE(Data.list$RT, # RCT
Data.list$RW, # RWE
thres.psi = thres.psi,
fixed = FALSE # adaptive selection strategy
)
})
class(elastic_list) <- 'res' # overload
elastic_list
})
# psi = c(0, 1, 1)
elastic_psi011_lists <- lapply(alltlocalpar, function(tlocalpar)
{
elastic_list <- sapply(1:niter, function(seed)
{
Data.list <- GenData(beta0 = c(0, 1, 1, 1), # for the mu0 function
psi0 = c(0, 1, 1), # for the contrast function
n = 1e5, mean.x = 1, # setup for the finite population
n.t = NULL, # for the RCT, use the default sample size
m = m, tlocalpar = tlocalpar, # for the RWE
seed = seed)
elasticHTE(Data.list$RT, # RCT
Data.list$RW, # RWE
thres.psi = thres.psi,
fixed = FALSE # adaptive selection strategy
)
})
class(elastic_list) <- 'res'
elastic_list
})At last, we reproduce the summary results in Yang et al., (2022), Table 1 and the plots in Yang et al., (2022), Figure 4 as follow.
| RT.2 | RT.3 | EE.2 | EE.3 | ELAS.2 | ELAS.3 | |
|---|---|---|---|---|---|---|
| 0 | 94.1 | 94.1 | 93.8 | 93.7 | 92.7 | 92.4 |
| 0.11 | 94.1 | 94.1 | 92.2 | 92.7 | 93.2 | 92.8 |
| 0.23 | 94.1 | 94.0 | 88.5 | 89.8 | 92.8 | 92.8 |
| 0.34 | 94.1 | 94.0 | 83.2 | 84.4 | 94.0 | 93.8 |
| 0.46 | 94.1 | 94.0 | 74.7 | 76.3 | 94.5 | 94.6 |
| 0.57 | 94.1 | 94.0 | 66.4 | 66.1 | 95.6 | 95.2 |
| 0.69 | 94.1 | 94.1 | 56.1 | 56.3 | 95.6 | 95.8 |
| 0.8 | 94.1 | 94.0 | 46.3 | 46.8 | 95.4 | 95.6 |
| 1 | 94.1 | 94.0 | 31.5 | 31.0 | 95.4 | 95.0 |
| 2 | 94.1 | 94.0 | 2.9 | 3.6 | 94.3 | 94.4 |
| RT.2 | RT.3 | EE.2 | EE.3 | ELAS.2 | ELAS.3 | |
|---|---|---|---|---|---|---|
| 0 | 528 | 528 | 243 | 242 | 472 | 473 |
| 0.11 | 527 | 528 | 242 | 242 | 488 | 487 |
| 0.23 | 527 | 528 | 241 | 242 | 496 | 497 |
| 0.34 | 528 | 528 | 241 | 241 | 516 | 516 |
| 0.46 | 528 | 528 | 239 | 240 | 530 | 530 |
| 0.57 | 528 | 528 | 238 | 238 | 535 | 535 |
| 0.69 | 528 | 528 | 235 | 236 | 534 | 534 |
| 0.8 | 528 | 528 | 233 | 234 | 532 | 532 |
| 1 | 528 | 528 | 229 | 230 | 529 | 529 |
| 2 | 528 | 528 | 207 | 208 | 527 | 527 |
| RT.2 | RT.3 | EE.2 | EE.3 | ELAS.2 | ELAS.3 | |
|---|---|---|---|---|---|---|
| 0 | 94.3 | 93.8 | 95.0 | 94.2 | 92.7 | 92.5 |
| 0.11 | 94.3 | 93.8 | 93.3 | 92.9 | 92.9 | 92.7 |
| 0.23 | 94.3 | 93.8 | 89.8 | 89.0 | 93.3 | 92.7 |
| 0.34 | 94.3 | 93.8 | 84.9 | 83.4 | 94.4 | 93.4 |
| 0.46 | 94.3 | 93.8 | 76.8 | 75.8 | 94.4 | 94.4 |
| 0.57 | 94.3 | 93.8 | 67.2 | 66.8 | 95.6 | 94.8 |
| 0.69 | 94.3 | 93.8 | 56.8 | 55.9 | 95.3 | 94.6 |
| 0.8 | 94.3 | 93.8 | 46.5 | 45.2 | 95.3 | 95.0 |
| 1 | 94.3 | 93.8 | 31.0 | 29.4 | 95.4 | 94.9 |
| 2 | 94.3 | 93.8 | 2.6 | 3.0 | 94.7 | 94.2 |
| RT.2 | RT.3 | EE.2 | EE.3 | ELAS.2 | ELAS.3 | |
|---|---|---|---|---|---|---|
| 0 | 529 | 530 | 243 | 243 | 472 | 474 |
| 0.11 | 529 | 530 | 242 | 243 | 479 | 480 |
| 0.23 | 529 | 530 | 241 | 242 | 498 | 500 |
| 0.34 | 529 | 530 | 241 | 242 | 511 | 514 |
| 0.46 | 529 | 530 | 240 | 240 | 524 | 526 |
| 0.57 | 529 | 530 | 238 | 239 | 530 | 532 |
| 0.69 | 529 | 530 | 236 | 236 | 529 | 531 |
| 0.8 | 529 | 530 | 233 | 234 | 530 | 532 |
| 1 | 529 | 530 | 229 | 230 | 530 | 532 |
| 2 | 529 | 530 | 208 | 209 | 528 | 530 |