Simulation example: comparing AIPW and SES

In this vignette, we will compare the performances of the AIPW-adjusted approach and the SES approach based on RT data (Yang et al., (2022), Section S4.1). The data generating mechanism is the same as in here except that we now consider different propensity score distributions.

The following figure shows the propensity score distributions by treatment group and demonstrates the degrees of separation in the three scenarios.

The simulation results (Yang et al., (2022), Table S2) for comparing RT.AIPW and RT.SES are the following:
Case 1: weak separation
AIPW.2 AIPW.3 RT.2 RT.3
bias -1.4 -2.3 -0.5 -0.9
S.D. 241.8 248.2 180.1 185.6
root-MSE 242.2 249.3 180.2 185.8
Coverage rate 94.4 91.8 95.4 93.2
width 955.1 941.7 709.3 709.9
Case 2: median separation
AIPW.2 AIPW.3 RT.2 RT.3
bias 1.3 -0.7 0.4 -1.2
S.D. 364.8 380.5 259.6 249.3
root-MSE 365.0 380.6 259.6 249.6
Coverage rate 92.8 93.2 94.6 94.6
width 1389.5 1420.0 974.1 970.7
Case 3: strong separation
AIPW.2 AIPW.3 RT.2 RT.3
bias 2.7 0.5 -1.5 -2.0
S.D. 622.2 554.9 393.9 396.7
root-MSE 622.7 554.9 394.2 397.2
Coverage rate 91.0 92.0 93.2 91.6
width 14568.9 5076.9 1448.0 1447.9